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Abstract This paper applies radial point interpolation
collocation method (RPICM) for solving nonlinear
Poisson equations arising in computational chemistry
and physics. Thin plate spline (TPS) Radial basis
functions are used in the work. A series of test
examples are numerically analysed using the present
method, including 2D Liouville equation, Bratu
problem and Poisson-Boltzmann equation, in order to
test the accuracy and efficiency of the proposed
schemes. Several aspects have been numerically inves-
tigated, namely the enforcement of additional poly-
nomial terms; and the application of the Hermite-type
interpolation which makes use of the normal gradient
on Neumann boundary for the solution of PDEs with
Neumann boundary conditions. Particular emphasis
was on an efficient scheme, namely Hermite-type
interpolation for dealing with Neumann boundary
conditions. The numerical results demonstrate that a
good accuracy can be obtained. The h-convergence
rates are also studied for RPICM with coarse and fine
discretization models.

Keywords RPICM Æ Hermite-type interpolation Æ
Meshfree Æ Nonlinear poisson equation Æ Thin plate
spline

1 Introduction

In recent years, research on meshless (meshfree)
methods has made significant progress in science and
engineering, especially in the area of computational
mechanics [1]. Meshfree methods based on radial
basis function (RBF) have a clear advantage over
other meshfree methods due to its simplicity and
stability in field variable interpolation [2–3]. However,
traditional radial basis function methods result in
fully-populated matrices [4–7], which limit its appli-
cation in large scale practical engineering problems.
Radial point interpolation method (RPIM) was pro-
posed by Liu and Wang [2], and has been improved
and applied with Galerkin-based formulations [3–4].
In [8], an efficient radial basis point interpolation
collocation-based formulation, namely radial point
interpolation collocation method (RPICM), has been
presented and applied to solve 2-D linear elastic
problem. In RPICM, the collocation scheme, which is
simple and efficient to solve partial differential equa-
tions, has been adopted without the need of numer-
ical integrations. In addition, RPICM uses RBFs in a
locally support domain so that the system matrix
becomes sparse and hence can be applied to more
complicated problems.

However, the research results in [9–10] showed that
the accuracy obtained by using direct collocation scheme
is a bit poor especially on boundary. In addition, the
collocation scheme, which has difficulties in dealing with
Neumann boundary conditions, is very different from
the Galerkin scheme that can deal with Neumann
boundary conditions naturally. In [9], a Hermite-type
interpolation scheme in generalized finite difference
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method has been proposed to improve the accuracy of
collocation-based approach for solving solid problems.
In [10], the Hermite-type interpolation was successfully
extended to compactly support radial basis function
method. In our paper, the Hermite-type interpolation is
adopted in RPICM in order to improve the accuracy for
solving nonlinear Poisson equation with Neumann
boundary conditions. Approximate field functions are
carried out not only with the nodal values but also with
the normal gradient on Neumann boundaries by taking
advantage of the point interpolation method based on
radial basis functions.

Solution of Poisson type differential equations can
be obtained by finding an approximate particular
solution to the forcing term followed by a boundary
element method. Recently, Ramachandran proposed
osculatory radial basis functions (RBFs), called oscu-
latory interpolation, to find the approximate particular
solution [12–13]. In traditional RBF interpolation, the
gradient information is not used to construct a better
approximation to solution function. However, in
osculatory RBF interpolation, both the value of the
function and its normal derivatives at the nodal points
are utilized for constructing the approximate function,
and it produces higher accuracy. In our paper, gra-
dient information, called Hermite-type interpolation, is
adopted only for these nodes on Neumann bound-
aries. Meanwhile, our method is based on point
interpolation schemes, so it is local.

In this paper, the radial point interpolation collo-
cation method (RPICM) is applied. The formulation
for constructing shape functions based on radial point
interpolation and Hermite radial point interpolation is
described and formulated in Sect. 2 and 3. The detail
collocation schemes are discussed in Sect. 4. In Sect. 5,
the accuracy and simplicity of this presented approach
is shown numerically by a series of test examples. We
conclude with a summary in Sect. 6.

2 Radial point interpolation method

When MQ and Gaussian radial basis functions were
adopted to construct field function in local support
domain, and then it is applied for solving PDEs,
h-convergence usually fails because it is heavily depen-
dent on the choice of the shape parameter [11]. In view
of this fact, the approximation of a function u(x) will be
constructed using TPS radial basis functions in this pa-
per. It may be written as a linear combination of n radial
basis functions, viz.,

uðxÞ ffi ûðxÞ ¼
Xn

i¼1
ai/ r� rik kð Þ ð1Þ

/ r� rik kð Þ ¼ r� rik k2mlog r� rik kð Þ ð2Þ

where n is the number of points in the support domain
near x, ai are coefficients to be determined.
Here r is the distance between two points. In 2-D
problems, we have

r� rik k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xið Þ2þ y � yið Þ2

q
ð3Þ

The interpolations of a function at the kth point can
have the form of

ûðxkÞ ¼ a1/ð rk � r1k kÞ
þ a2/ð rk � r2k kÞ þ � � � þ an/ð rk � rnk kÞ;

k ¼ 1; 2; . . . ; n ð4Þ
The function interpolation can be expressed in a matrix
form as follows:

ûe ¼ Ua ð5Þ

ûe ¼ ûðx1Þ � � � ûðxkÞ � � � ûðxnÞ½ �T ð6Þ

a ¼ a1 � � � ai � � � an½ �T ð7Þ
Thus, the unknown coefficients vector is found to be

a ¼ U�1ûe ð8Þ
The form of the approximation function can be obtained
as follows:

ûðxÞ ¼ ua ¼ uU�1ûe ¼ wûe ð9Þ

w ¼ /ð r� r1k kÞ /ð r� r2k kÞ � � � /ð r� rnk kÞ½ �
ð10Þ

where the matrix of shape functions can be expressed as
follows

w ¼ uU�1 ¼ w1 � � � wi � � � wn½ � ð11Þ
in which w1ði ¼ 1; . . . ; nÞ are shape functions for points
in the support domain, which satisfy.

wiðxjÞ ¼
1; j = i
0; j 6=i

�
ð12Þ

U¼

/ð r1� r1k kÞ � � � /ð r1� rik kÞ � � � /ð r1� rnk kÞ
..
. . .

. ..
. . .

. ..
.

/ð ri� r1k kÞ � � � /ð ri� rik kÞ � � � /ð ri� rnk kÞ
..
. . .

. ..
. . .

. ..
.

/ð rn� r1k kÞ � � � /ð rn� rik kÞ � � � /ð rn� rnk kÞ

2

6666664

3

7777775

ð13Þ
Whether F-1 exists and how to assure its existence
may depend on the choice of the local support
domain. Enough number of nodes and good perfor-
mance arrangement of nodes in the local support
domain near collocation point x must be constructed
for this collocation scheme. In our examples in Sect. 5,
the number of nearest points in the support domain
will be chosen to be 9, 16, 25 or 36 in order to
observe its influence on accuracy and stability.
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3 Hermite radial point interpolation method

The approximation of a function u(x) may be written as
a linear combination of radial basis functions at the n
nodes within support domain near x and its normal
derivatives at the nb nodes on Neumann boundaries:

uðxÞ ffi ûðxÞ ¼
Xn

i¼1
ai/i þ

Xnb

j¼1
bj

o/b
j

on
þ GðxÞ ð14Þ

/i ¼ /ð x� xik kÞ; /b
j ¼ /ðkx� xb

jkÞ;

o/b
j

on
¼ lx

j

o/b
j

ox
þ ly

j

o/b
j

oy

ð15Þ

Constant term:

GðxÞ ¼ g0 ð16Þ
Linear polynomial:

GðxÞ ¼ g0 þ g1xþ g2y ð17Þ
Square polynomial:

GðxÞ ¼ g0 þ g1xþ g2y þ g3x2 þ g4xy þ g5y2 ð18Þ
ai are coefficients which correspond to radial basis /i of
function, bj are coefficients which correspond to normal
derivative of radial basis /j of function at the points on
Neumann boundaries, and g0; g1; g2; . . . are the coeffi-
cients of the additional unknown polynomial. / is the
radial basis. lx

j ; l
y
j are the elements of normal vector at

the jth point on Neumann boundaries.
The coefficients ai and bj in Equation (14) can be

determined by enforcing that the function interpolations
pass through all n nodes within the support domain and
the normal derivatives’ interpolations of function pass
through nb nodes on Neumann boundaries.

The interpolations of the function at the kth point
have the form:

ûk ¼ ûðxkÞ ¼
Xn

i¼1
ai/ki þ

Xnb

j¼1
bj

o/b
kj

on
þ GðxkÞ;

k ¼ 1; 2; . . . ; n

ð19Þ

/b
kj ¼ / xk � xb

j

���
���

� �
; /b

kj ¼ / xk � xb
j

���
���

� �
ð20Þ

The interpolations of the normal derivatives of function
at the mth point on the Neumann boundaries have the
form:

oûb
m

on
¼ oûbðxmÞ

on
¼
Xn

i¼1
ai

o/mi

on
þ
Xnb

j¼1
bj

o

on

o/b
mj

on

 !

þ oGðxmÞ
on

;m ¼ 1; 2; . . . ; nb

ð21Þ Fig. 1a–c Quasi-Uniform node discrezation model and scattered
point model for unit circle solution domain for example 1 and 2.
a 85-node model. b 221-node model. c 221 node Halton scattered
model
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In addition, the additional polynomial terms have to
satisfy an extra requirement that guarantees unique
approximation of the function, and the following con-
straints are usually imposed (see, [15] for the details):

Xn

k¼1
ak ¼ 0 ð22Þ

Xn

k¼1
akxk ¼ 0;

Xn

k¼1
akyk ¼ 0 ð23Þ

Xn

k¼1
akx2k ¼ 0;

Xn

k¼1
akxkyk ¼ 0;

Xn

k¼1
aky2k ¼ 0 ð24Þ

For constant additional term, only one constraint
equation (22) is enforced. For linear additional term,
three constraint equations (22–23) are enforced. For
quadratic additional terms, six constraint equations (22–
24) are enforced.

The interpolations of function and normal derivatives
on the Neumann boundaries can be expressed by matrix
formulations as follows:

ûe ¼ Wa ð25Þ
where ûe is the vector that collects all variables of the
nodal function values at the n nodes in the support do-
main and all variables of normal derivatives of the nodal
function at the nb nodes on the Neumann boundaries in
the support domain.

ûe ¼ û1 � � � ûk � � � oûb
1

on � � � oûb
m

on � � � oûb
nb

on 0

h iT
ð26Þ

The coefficients vector a is defined as

a¼ a1 � � � ai � � � an b1 � � � bj � � � bnb c0 � � �½ �T ð27Þ
Thus the unknown coefficients vector

a ¼ W�1ûe ð28Þ
Finally, the approximation form of function can be
obtained as follows:

ûðxÞ ¼ Ua ¼ UW�1ûe ¼ wûe ð29Þ

The matrix of radial basis, its normal derivatives and
linear additional terms is defined by

U¼ /1 � � �/i � � �/n
o/b

1

on
� � �o/

b
m

on

�
� � �

o/b
nb

on
1 x y � ð30Þ

The matrix of shape functions can be expressed as fol-
lows

w¼UW�1 ¼ w1 � � � wi � � � wn wH
1 � � � wH

m � � � wH
nb

h i

ð31Þ
Here wði ¼ 1; 2; . . . ; nÞ and wH

j ðj ¼ 1; 2; . . . ; nbÞ are
shape functions.

Finally, the function u(x) can be expressed as follows:

û ¼
Xn

k¼1
wkûe

k þ
Xnb

j¼1
wH

j

oûe
j

on
ð32Þ

4 Collocation schemes

Let us consider the following general second-order
partial differential equation, given by

WðuÞ ¼ Aðx; yÞ o
2u

ox2
þ 2Bðx; yÞ o2u

oxoy

Cðx; yÞ o
2u

oy2
� U

�
x; y; u;

ou
ox
;
ou
oy

�
in X ð33Þ

This PDE can be solved using point interpolation col-
location method when appropriate boundary conditions
are imposed.

� When F is linear in u

If the expression F is linear in u, i.e., i

U ¼ Dðx; yÞ ou
ox
þ Eðx; yÞ ou

oy
þ F ðx; yÞuþ Gðx; yÞ ð34Þ

then the equation would be a linear PDE.
together with the general boundary:
Neumann boundary condition:

Lb1ðuÞ ¼ nT � ruþ �gn ¼ 0 on Cb1 ð35Þ
Dirichlet boundary condition:

u� �u ¼ 0 on Cb2 ð36Þ
The coefficients A, B, C, D, E, F and G may all depend
upon x and y.

Assuming that there are Nd internal (domain) points
and Nb =Nb1+ Nb2 boundary points, where Nb1 are
Neumann boundary points and Nb2 are Dirichlet
boundary points.

In general, the location of the collocation points can
be different from the location of nodes in the discretised
model. However, for the sake of simplicity, collocation
points are the same as the nodes of the model.Fig. 2 406-node scattered points model for Example 3
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The following Nd equations are satisfied in internal
domain nodes:

Wi ¼WðûiÞ ¼ A
o2ûi

ox2
þB

o2ûi

oxoy
þC

o2ûi

oy2

� D
oûi

ox
þE

oûi

oy
þ F ûiþGðxi; yiÞ

� �
¼ 0 in X

ð37Þ

The following Nb1 equations are satisfied on Neumann
boundary Cb1:

nT � rûi þ �gn ¼ 0; i ¼ 1; . . . ;Nb1 ð38Þ
The following Nb2 equations are satisfied on Dirichlet
boundary Cb2:

ûi � �u ¼ 0; i ¼ 1; . . . ;Nb2 ð39Þ
In collocation method, two equations will be imposed at
all Neumann boundary nodes: one equation resulting
from the known Neumann boundary condition, and one
from the PDEs (i.e., the same as the interior of the do-
main).

ûi can be obtained by equation (9) or (32). Its deriv-
atives can be obtained by the following equations:

Table 1 quasi-uniform 85-node coarse model with Quadratic
additional polynomial (m=6)

results
in [12]

9 nodes
in SD

16 nodes
in SD

25 nodes
in SD

u at r=0.0 0.1127 No convengence 0.1561 0.1194
u at r=0.7 0.5964 – 0.6219 0.5994
u at r=0.9 0.8589 – 0.8720 0.8609
@u
@n at r=1.0 1.4332 – 1.2836 1.3960

Table 2 quasi-uniform 221-node fine model with linear additional
polynomial (m=4)

results
in [12]

9 nodes
in SD

16 nodes
in SD

25 nodes
in SD

u at r=0.0 0.1127 0.3079 No convengence 0.3917
u at r=0.7 0.5964 0.6861 – 0.7398
u at r=0.9 0.8589 0.8889 – 0.9075
@u
@n at r=1.0 1.4332 1.1387 – 0.9339

Table 3 quasi-uniform 221-node fine model with Quadratic addi-
tional polynomial (m=6)

results
in [12]

9 nodes
in SD

16 nodes
in SD

25 nodes
in SD

u at r=0.0 0.1127 0.1167 0.1437 0.1254

u at r=0.7 0.5964 0.5765 0.6098 0.6026

u at r=0.9 0.8589 0.8597 0.8630 0.8620
@u
@n at r=1.0 1.4332 1.4404 1.3943 1.3954

Table 4 Halton scattered 221-node fine model with Quadratic ad-
ditional polynomial (m=6)

results
in [12]

9
nodes

16
nodes

25
nodes

30
nodes

u at r=0.0 0.1127 0.1052 0.3861 0.1018 0.1103
u at

r=0.7

0.5964 0.5938 0.6676 0.5857 0.5231

u at r=0.9 0.8589 0.8583 0.8809 0.8520 0.8579
@u
@n at r=1.0 1.4332 – 1.2342 1.4922 1.4414

Table 5 quasi-uniform 85-node coarse model with Quadratic additional polynomial (m=6)

results
in [12]

9 nodes
in SD

16 nodes
in SD

25 nodes
in SD

u at r=0.0 1.3176 No Convengence 1.3139 1.3161
u at r=0.7 1.1559 – 1.1526 1.1550
u at r=0.9 1.0568 – 1.0548 1.0562
@u
@n at r=1.0 )0.5900 – )0.5668 )0.5823

Table 6 quasi-uniform 221-node fine model with linear additional
polynomial (m=4)

results
in [12]

9 nodes
in SD

16 nodes
in SD

25 nodes
in SD

u at r=0.0 1.3176 1.2801 1.5672 1.2610
u at r=0.7 1.1559 1.1347 1.2376 1.1183
u at r=0.9 1.0568 1.0491 1.0719 1.0428
ou
on at r=1.0 )0.5900 )0.5067 )0.4482 )0.4325

Table 7 quasi-uniform 221-node fine model with Quadratic addi-
tional polynomial (m=6)

results
in [12]

9 nodes
in SD

16 nodes
in SD

25 nodes
in SD

u at r=0.0 1.3176 1.3158 1.3153 1.3155
u at r=0.7 1.1559 1.1588 1.1544 1.1546
u at r=0.9 1.0568 1.05632 1.0562 1.0560
@u
@n at r=1.0 )0.5900 )0.5872 )0.58405 )0.5802

Table 8 Halton scattered 221-node fine model with Quadratic ad-
ditional polynomial (m=6)

results
in [12]

9 nodes
in SD

16 nodes
in SD

25 nodes
in SD

30 nodes
in SD

u at r=0.0 1.3176 1.3172 1.2821 1.3173 1.3169
u at r=0.7 1.1559 1.1554 1.1484 1.1562 1.0541
u at r=0.9 1.0568 1.0565 1.0543 1.0572 1.0565
@u
@n at r=1.0 )0.5900 – )0.5677 )0.5921 -0.5871
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ûðxÞ ¼
Xn

j¼1
/jû

e
j ;

oûðxÞ
ox
¼
Xn

j¼1

o/j

ox
ûe

j ;
o2ûðxÞ

ox2
¼

Xn

j¼1

o2/j

ox2
ûe

j
oûðxÞ

oy
¼
Xn

j¼1

o/j

oy
ûe

j ;
o2ûðxÞ

oy2
¼

Xn

j¼1

o2/j

oy2
ûe

j ;
o2ûðxÞ
oxoy

¼
Xn

j¼1

o2/j

oxoy
ûe

j

ð40Þ

ûi ¼ ûðxiÞ;
oûi

ox
¼ oûðxiÞ

ox
;

o2ûi

ox2
¼ o2ûðxiÞ

ox2

oûi

oy
¼ oûðxiÞ

oy
;

o2ûi

oy2
¼ o2ûðxiÞ

oy2
;

o2ûi

oxoy
¼ o2ûðxiÞ

oxoy

ð41Þ

� When F is nonlinear in u

For the nonlinear case, Newton-Raphson iteration
scheme has to be adopted in numerical tests. Initial value
vector û0 should be assumed for the beginning of solution.

Wk
i ¼ Wðûk

i Þ ¼ A
o2ûk

i

ox2
þ B

o2ûk
i

oxoy
þ C

o2ûk
i

oy2

� U xi; yi; ûk
i ;

oûk
i

ox
;
oûk

i

oy

� �
¼ 0 in X ð42Þ

nT � rûk
i þ �gn ¼ 0; i ¼ 1; . . . ;Nb1 ð43Þ

ûk
i � �u ¼ 0; i ¼ 1; . . . ;Nb2 ð44Þ

Wkþ1
i ¼ Wiðûkþ1Þ ¼ Wiðûk þ DûkÞ

¼ WiðûkÞ þ oWk
i

oûk
� Dûk þ O ðDûkÞ2

� � ð45Þ

oWk
i

oûk

� 	
Dûk ¼ � WiðûkÞ


 �
;Dûk ¼ � oWk

i

oûk

� 	�1
WiðûkÞ

 �

ð46Þ

Fig. 3 The solution for 2D Poisson-Boltzmann equation with 21·21
uniform model TPS + linear additional polynomial without Hermite
interpolation on Neumann boundaries 25 nearest points within every
support domain

Fig. 4 The solution for 2D Poisson-Boltzmann equation with 21·21
uniform model TPS + linear additional polynomial with Hermite
interpolation on Neumann boundaries 9 nearest points within every
support domain
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ûkþ1 ¼ ûk þ Dûk; Dûk
�� �� � 10�4 ð47Þ

5 Numerical simulations

In this section, several examples on nonlinear Poisson
equations are numerically analysed by TPS-RPICM.
Several different results are obtained by using different
additional polynomials and different exponentials. In
addition, particular attention should be paid to example
3, where Hermite-type interpolation schemes on Neu-
mann boundaries are adopted in order to improve
numerical accuracy.

� Example 1: Liouville equation.

r2u ¼ U ¼ k2

8
e�u; k2 ¼ 40 ð48Þ

The solution domain is a unit circle in Figure 1 and
Dirichlet condition of u=1 on the boundary is em-
ployed.

In this case, all these numerical results obtained with
coarse and fine discrete models using TPS radial basis
with linear and quadratic additional polynomials have
been listed in Tables 1–4.

Table 1 is for TPS (m ¼ 6) with quadratic polynomial
with 85-node quasi-uniform coarse model; Table 2 is for
TPS (m ¼ 4) with linear polynomial with 221-node
quasi-uniform fine model;

Table 3 is for TPS (m ¼ 6) with quadratic polyno-
mial with 221-node quasi-uniform fine model; Table 4
is for TPS (m ¼ 6) with quadratic polynomial with 221-
node Halton scattered fine model. From these results, it
can be observed that the accuracy obtained using TPS
with quadratic additional polynomial is higher than
that obtained using TPS with linear additional poly-
nomial. The results are better using more points in
local support domain. For coarse model, less point in

Fig. 5 The solution for 2D Poisson-Boltzmann equation with 21·21
uniform model TPS + linear additional polynomial with Hermite
interpolation on Neumann boundaries 25 nearest points within every
support domain

Fig. 6 The solution for 2D Poisson-Boltzmann equation with 21·21
uniform model TPS + linear additional polynomial with Hermite
interpolation on Neumann boundaries 35 nearest points within every
support domain
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local support domain lead the result to fail, so more
points will be needed in its support domain. For fine
model, however, good results can be obtained even
with less point in support domain. In addition, the
results obtained using Halton scattered points model is
stable, and it shows that our method is suitable for
scatter points model.

� Example 2: 2D Bratu problem

r2u ¼ U ¼ �keu; k ¼ 1

e
ð49Þ

The solution domain and boundary condition are the
same as in Example 1. The same coarse and fine discrete
models as Example 1 are adopted to obtain the numer-
ical results listed in Tables 5–8.

Table 5 is for TPS with quadratic polynomial (m=6)
with 85-node quasi-uniform coarse model; Table 6 is for
TPS with linear polynomial (m=4) with 221-node quasi-
uniform fine model;

Table 7 is for TPS with quadratic polynomial with
221-node quasi-uniform fine model; Table 8 is for TPS
with quadratic polynomial with 221-node Halton scat-
tered fine model. From these results, similar conclusions
as the previous example can be observed:

The accuracy obtained using TPS with quadratic
additional polynomial is higher than that obtained
using TPS with linear additional polynomial. The re-
sults are better using more points in local support
domain. For coarse model, less point in local support
domain leads the result to fail, so more points will be
needed in its support domain. For fine model, how-
ever, good results can be obtained even with less point
in support domain. In addition, the results obtained
using Halton scattered points model is stable, and it
shows that our method is suitable for scattered points
model.
� Example 3: Poisson-Boltzmann equation [14].

� Duðx; yÞ þ j2 sinhðuðx; yÞÞ ¼ f ;

X ¼ 0;
5

8

� 	
� 0;

5

12

� 	
; j ¼ 79:0; f ¼ 0

ð50Þ

Boundary conditions:

u ¼ 8:0; on x ¼ 5=8; u ¼ 8:0; on y ¼ 5=12;

ou
ox
¼ 0; x ¼ 0;

ou
oy
¼ 0; y ¼ 0

ð51Þ

The solutiondomain for this problem is the rectangle: [0.0,
5/8]·[0.0, 5/12]. The electrical potential u can be approx-
imated by radial basis point interpolation equation (4).

For uniformly distributed model, 21·21 nodes model
has been employed in the calculations. The numerical
results are obtained by TPS-RPICM with linear addi-
tional polynomials (m ¼ 4). Three kind of the local
support domain size are chosen by keeping 9, 25 and 35
nearest nodes in support domain respectively. When
Hermite-type interpolation on Neumann boundaries is
not adopted, the electrical potential obtained with 25
nearest points in every support domain is shown in
Fig. 3. For 9 and 35 nearest points in every support
domain, the computation fails before iterations are
completed. It appears that the numerical stability and
accuracy can be improved when quadratic additional
polynomial is adopted. In this case, more nearest points
within every support domain will lead to good accuracy
especially for the numerical oscillation on Neumann
boundaries. However, this conclusion does not apply for
linear additional polynomial.

When Hermite-type interpolation on Neumann
boundaries is adopted, the electrical potentials obtained
with 9, 25 and 35 nearest points in every support domain
are shown in Figs 4–6, respectively.

From the results, it is observed that the numerical
oscillation on Neumann boundaries disappears when
Hermite-type interpolation is adopted on Neumann
boundaries. As a result, it can be concluded that the
accuracy and stability have been improved with Her-
mite-type interpolation.

For scattered point model, 406 scattered points
model in Fig. 2 has been employed in the calculations.
The numerical results are obtained by TPS-RPICM with
linear (m ¼ 4) and square (m ¼ 6) additional polyno-
mials. The local support domain size is chosen in order
to keep 25 nearest nodes in every SD. Figure 7a shows

Fig. 7 The solution for 2D
Poisson-Boltzmann equation
with 406 scattered points model
TPS + linear and square
additional polynomial without
and with Hermite-type
interpolation on Neumann
boundaries 25 nearest points
within every support domain
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the solution to the electrical potentials on Neumann
boundary I for different additional polynomial without
and with Hermite-type interpolations. Figure 7b shows
the solution to the electrical potentials on Neumann
boundary II for different additional polynomial without
and with Hermite-type interpolations.

From the results, it is obvious that the numerical
oscillation on boundary can be improved by the fol-
lowing two schemes:

(1) when quadratic polynomial is adopted instead of
linear polynomial;

(2) when Hermite-type interpolation is adopted on
Neumann boundaries.

The effectiveness is better using (2) than (1).

Conclusion

The results obtained by the present method demonstrate
that accuracy is better using quadratic additional poly-
nomial than using linear additional polynomial. The
Hermite-type interpolation on Neumann boundary is
very effective both for avoiding numerical oscillations on
Neumann boundaries and for improving numerical
stability during the calculations.
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